Characterization of a Novel Long-Chain n-Alkane-Degrading Strain, Dietzia sp. E1

Zoltán Bihari^{a,*}, Zsolt Szabó^a, Attila Szvetnik^a, Margit Balázs^a, Péter Bartos^a, Péter Tolmacsov^a, Zoltán Zombori^b, and István Kiss^a

- Department of Applied Microbiology, Institute for Biotechnology,
 Bay Zoltán Foundation for Applied Research, Derkovits fasor 2.,
 H-6726 Szeged, Hungary. Fax: +36-62-432250. E-mail: bihari@bay.u-szeged.hu
 Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences,
 Temesvári körút 62., P. O. Box 521, H-6701 Szeged, Hungary
- * Author for correspondence and reprint requests
- Z. Naturforsch. **65 c**, 693–700 (2010); received July 19/September 3, 2010

The newly isolated strain E1, identified as a *Dietzia* sp., proved to have an excellent ability to degrade n- C_{12} to n- C_{38} alkane components of crude oil. The preferred substrate was the very long-chain alkane n-eicosane at an optimal temperature of 37 °C and an optimal pH of 8 under aerobic conditions. The growth and substrate uptake kinetics were monitored during the n-alkane fermentation process, and *Dietzia* sp. E1 cells were found to possess three distinct levels of cell-surface hydrophobicity. Gas chromatographic/mass spectrometric analysis revealed that intracellular substrate mineralization occurred through the conversion of n-alkane to the corresponding n-alkanal. The monoterminal oxidation pathway was presumably initiated by AlkB and CYP153 terminal alkane hydroxylases, both of their partial coding sequences were successfully detected in the genome of strain E1, a novel member of the *Dietzia* genus.

Key words: n-Alkane, Dietzia, Cell-Surface Hydrophobicity